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Stationary transmission distribution of random spike trains by dynamical synapses
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~Received 6 May 2002; published 10 February 2003!

Many nonlinearities in neural media are strongly dependent on spike timing jitter and intrinsic dynamics of
synaptic transmission. Here we are interested in the stationary density of evoked postsynaptic potentials
transmitted by depressing synapses for Poisson spike trains of fixed mean rates. We present a nonperturbative
iterative method for computing the stationary density over increasing intervals. We conclude by showing how
this method generalizes to other types of synapses, such as facilitating and hybrid synapses.
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Differential equations with random impulse stimulatio
are useful tools for modeling diverse phenomena such
earthquakes and traffic behavior. More recently, phenome
logical stochastic differential equations were introduced t
describe synaptic interactions in neural media. It has pr
ously been shown that noise and dynamical synaptic tra
mission can give rise to a broad variety of dynamical beh
iors in networks of pulse-coupled neurons, e.g., oscillatio
phase-locking, synchronization, and stabilizatio
destabilization of the asynchronous firing state@1–5#. As a
first step toward understanding the detailed interplay
tween noise and dynamical synaptic transmission, we h
study how the irregularity of spike timing translates into
regularity of synaptic amplitudes. We investigate whether
for other systems@6#, exact solutions to the stationary sy
aptic amplitude density can be computed.

During their normal operation, cortical neurons fire ve
irregularly@7#. A phenomenologically accurate description
this irregularity is that of a Poisson spike trainr(t)5( id(t
2t i), according to which interspike intervals~ISI’s! occur
randomly according to an exponential distribution@8#. That
is, the probabilityp(Ti) of observing the interspike interva
Ti5t i 112t i is given by

p~Ti !5
1

l
e2Ti /l, ~1!

where the parameterl corresponds to the mean ISI andl2 to
the variance.

Many cortical neurons have dynamic~facilitating and/or
depressing! synapses that elicit variable excitatory postsy
aptic potentials~EPSP’s!, depending on the history of pr
esynaptic activity@9–11#. If a presynaptic spike train is regu
lar ~periodic!, then the amplitudes of evoked postsynap
potentials of a dynamical synapse approach a steady valu
it is not regular, then EPSP amplitudes vary. We will fi
consider depressing synapses, for which EPSP amplitu
become smaller, the higher the presynaptic firing frequen
A simple phenomenological model in which EPSP amp
tudes are multiplicatively reduced after each presyna
spike and recover exponentially between spikes gives an
cellent fit to experimental data@12#. Accordingly, the ampli-
tudeai5a(t i) of an EPSP generated by a presynaptic sp
at time t i obeys the following kinetic model@15#:
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d

dt
a~ t !5

a02a~ t !

t
1 ln~g!a~ t !r~ t !, ~2!

where a0 is the resting amplitude,g the depressing facto
(0,g,1), andt the recovery time constant.g corresponds
to the factor by which EPSP amplitudes are reduced a
each spike. The shape and duration of EPSP’s are negle
in this description. For simplicity, in the following, we se
the resting amplitude toa051 mV.

Under stationarity assumptions, the mean EPSP amplit
ā5^ai& i of Poisson spike trains has a particularly simp
expression@13#

ā5
1

11~12g!tl21
. ~3!

Equation~3! can be derived simply by noting thatā corre-
sponds to the amplitude at which the rate of amplitude
crease equals the rate of amplitude increase in Eq.~2!, (1
2g)ā/l5(12ā)/t. It is currently unknown how to calcu
late the stationary probability densityq(a) of EPSP ampli-
tudes. Here we present a nonapproximative iterative meth

We start by assuming that we know the amplitudeai of
the i th EPSP. We then calculate the conditional probabi
density ofai 11 ~the dependence oni will drop in our final
result by assuming stationarity!. By integrating Eq.~2! be-
tween two spikes at timest i and t i 11, we can calculate the
dependence ofai 11 on bothai andTi :

ai 115gaie
2Ti /t112e2Ti /t. ~4!

The conditional densityp(ai 11uai) is defined as the prob
ability of observing the amplitudeai 11, given that the pre-
vious amplitude wasai . We can relate the conditional den
sity to the ISI density in Eq.~1!, by noting that the
probability that the (i 11)th amplitude is confined in an in
finitesimal interval aroundai 11 is equal to the probability
that the interspike interval is confined in an infinitesimal i
terval aroundTi , or

p~ai 11uai !dai 115p~Ti !dTi . ~5!
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In order to obtain an expression forp(ai 11uai), we have to
eliminateTi in Eq. ~5!. We do this by solving Eq.~4! for Ti
and replacing the result into Eq.~5!. By definings5t/l, we
find

p~ai 11uai !5s~12gai !
2s~12ai 11!s21 ~6!

for ai 11>gai and

p~ai 11uai !50 ~7!

for ai 11,gai . The reason whyp(ai 11uai) vanishes for
ai 11,gai is that an EPSP amplitude cannot be smaller th
g times the previous amplitude. It is easy to verify th
p(ai 11uai) in Eqs. ~6! and ~7! is properly normalized, i.e.
*0

1p(ai 11uai)dai 1151.
By knowing p(ai 11uai), we can infer how thei th prob-

ability densitypi(ai) for the i th amplitude is mapped ont
the densitypi 11(ai 11) for the (i 11)th amplitude

pi 11~ai 11!5E
0

1

p~ai 11uai !pi~ai !dai . ~8!

We are interested in the stationary densityq(a) in Eq. ~8! by
setting pi 11(a)5pi(a)ªq(a). This leads to the following
integral equation:

q~a!5s~12a!s21E
0

min(1,a/g)

~12ga8!2sq~a8!da8. ~9!

The difficulty of Eq. ~9! arises from the fact that the uppe
limit of the integral depends ona.

It is possible to solve Eq.~9! by numerical iteration. First
choose an arbitrary starting density, for example the unifo
density. Then, insert this density on the right hand side of
~9! and derive a new density on the left, to be reinserted
the right and so forth. This iteration procedure is expected
converge to a solutionq(a), because this sequence forms
Markov chain which is known to approach a stationary d
sity @14# @note that in principleq(a) does not have to be
unique#. This numerical scheme represents a clear comp
tional advantage over a Monte Carlo simulation of Eq.~2!.

In the following we show howq(a) can also be compute
analytically. By taking the derivative of Eq.~9! with respect
to a, we can express the integral Eq.~9! as two differential
equations forq(a), valid in nonoverlaping regions

dq~a!

da
5

~s21!q~a!

a21
~g<a!, ~10!

dq~a!

da
5

~s21!q~a!

a21
1

sq~a/g!

g~12a!
~a,g!. ~11!

We can solve Eq.~10! to find that for largea, q(a) has
the form of a power function

q~a!5c~a21!s21 ~g<a!, ~12!

wherec is an unknown integration constant that ultimate
can be determined by normalization*0

1q(a)da51. Interest-
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ingly, near the resting amplitude,q(a) does not explicitly
depend ong ~though it may implicitly depend ong via the
normalization factorc).

Having derivedq(a) for g<a, we can solve Eq.~10! in
the regiong2<a,g. In that region, Eq.~10! is a inhomo-
geneous differential equation, where the second term on
right constitutes the inhomogeneous term. From Eq.~12!, we
substituteq(a/g)5c(a/g21)s21 into the inhomogeneous
term. For q(a) in Eq. ~10! we make the ansatzq(a)
5k(a)(a21)s21, from which we find the following expres
sion for the derivative of the unknown functionk(a):

dk~a!

da
52

tc

lgs~a21!
S 12

g21

a21D s21

. ~13!

Assumings takes an integer value, the solution of Eq.~13!
can be written as

k~a!5
tc

lgs F (n51

s21 S s21

n D ~12g!n

n~a21!n
2 ln~12a!1c2G ,

~14!

where the large brackets indicate the binomial coefficient
c2 is an integration constant that can be determined by c
tinuity of q(a) at g, i.e.,

c25 (
n51

s21 S s21

n D ~21!n

n
2 ln~12g!2

lgs

t
. ~15!

Figure 1 shows a schematic depiction of our iterat
scheme for computingq(a) in the remaining regiona,g2.
The procedure is as follows: we use the solutionq(a) in the
regiong2<a,g as an inhomogeneous term~the last term!
in Eq. ~10!, determingq(a) in the regiong3<a,g2. This
equation is again solved by simple integration~the integral
involving the logarithm is laborious for larges and but be
simplified for example by Taylor expansion!; the integration
constant can be inferred from continuity ing2. In this way
we can work our way back to the origin, derivingq(a) over
a iteratively increasing interval. In practice we can stop
procedure after a few iterations, knowing that the density
to vanish near zero amplitudes.

The intuition behind why our derivation of the stationa
density is of a fractal nature is that amplitudes in the inter

FIG. 1. Iterative scheme for computing the stationary dens
The solution in the interval@g,1# defines the inhomogeneous ter
for the differential equation in the interval@g2,g#. The solution
there constitutes the inhomogeneous term for the subsequent
val and so forth.
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FIG. 2. EPSP amplitude histograms for a depressing synapse and three different mean interspike intervals. The full line s
analytically derived stationary density—identical to the overlayed density computed by 20 numerical iterations of Eq.~8! with an integration
stepsize of 0.01 mV. The vertical dashed line at 0.6 mV indicates the amount by which a fully recovered synapse is depressed aft
i.e., g50.6. a051 mV, t5500 ms. ~a! Small mean ISIs (l5100 ms). ~b! Marginal mean ISIs (l5500 ms). ~c! Large mean ISIs (l
5670 ms).
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@gk11,gk# are conditional on the rapid succession ofk pr-
esynaptic spikes; the occurrence of which is dependen
the occurence of a rapid succession ofk21 presynaptic
spikes, etc.

The results of our calculation are compared to a Mo
Carlo simulation of the original Eqs.~1! and ~2! and to a
numerical evaluation of Eq.~9!, see Figs. 2~a!, 2~b!, and 2~c!.
The original equations were simulated by generating a sp
train of 30 000 spikes with different mean ISIsl. We find a
good fit of our calculation to both the Monte Carlo simul
tion and the numerical computation. Qualitatively, we fi
that if the mean ISI is small compared to the recovery ti
constant of the depressing synapse, then the stationary d
bution of EPSP amplitudes looks approximately similar to
Gaussian with a small mean amplitude@Fig. 2~a!#. If the
mean ISI is equal to the recovery time constant, then
stationary distribution is marginal and all amplitudes larg
than g are equal in probability@Fig. 2~b!#. In the last case
where the mean ISI is smaller than the recovery time c
stant, the stationary distribution rises sharply for amplitud
larger thang, meaning that most EPSP’s have amplitud
close to the resting amplitude. Thus the shape ofq(a) de-
pends very sensitively on the ratiot/l, with a marginal be-
havior atl5t.

An interesting question is whether the mean EPSP am
tude elicited by a Poisson spike train of a given mean rat
smaller or larger than the steady amplitude elicited by a re
lar spike train of the same rate. For the regular spike tr
we calculate the steady EPSP amplitude by settingasªai
5ai 11 in Eq. ~4!, leading to

as5
12e2l/t

12ge2l/t
. ~16!

In this equation,l corresponds to the fixed ISI of the presy
aptic spike train. It is easy to show that thel dependence o
as is similar to that ofā in Eq. ~3!. However, for alll we
have thatas,ā, i.e., the mean amplitude elicited by a Po
son spike train is smaller than the steady amplitude o
regular spike train of the same firing rate. Intuitively, this c
02290
n

e

e

e
tri-
a

e
r

-
s
s

li-
is
u-
,

a

be understood by the fact that the Poisson spike train c
tains some very short interspike intervals, among which
second spike always elicits EPSP’s of particularly small a
plitudes, hence the shift to lower mean amplitudes.

We have found that a regular spike train is the most e
cient input that can be transmitted by a depressing syna
This can be seen as follows. GivenN spikes in a large time
interval T, we ask how to choose the individual interspik
intervalsTi( i 51, . . . ,n), such that the sum of EPSP amp
tudes is maximized. The constrained optimization of

E5(
i 51

N

ai1aS T2(
i 51

N

Ti D , ~17!

wherea is a Lagrange multiplier can be done by replaci
the Ti ’s by theai ’s using Eq.~4! and setting

]E

]ai
50. ~18!

Doing this, we find thatai5aj5a and thatE is maximized
for a regular spike train withTi5T/N.

Our results for depressing synapses can be extende
facilitating and hybrid synapses. According to Ref.@12#, a
simple model for EPSP amplitudesb elicited by a facilitating
synapse is

d

dt
b5

b02b

tb
1zr~ t !. ~19!

Unlike depression, facilitation is best described in an ad
tive manner, by the constantz.0 ~multiplicative facilitation
can lead to unbounded behavior!. We can again use an itera
tive scheme for computing the stationary densityr (b) for a
facilitating synapse, given a presynaptic Poisson spike tr
Setting b051 mV we find the analytical solution near th
resting amplitude

r ~b!5c~b21!tb /l21, 1,b,11z. ~20!

Maximizing E in Eq. ~17! for a facilitating synapse does no
result in a regular spike train. On the contrary, the sum
1-3
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EPSP amplitudes is largest when the interspike intervals
as small as possible, e.g., when the presynaptic neuro
bursting.

In the most general case, a synapse may have both fa
tating and depressing components. A quantitatively go
model is a multiplicative combination of the previous d
scriptions @12#. Accordingly, the amplitudehi of the i th
EPSP of a hybrid synapse is given by

hi5aibi , ~21!

whereai is given by Eq.~4! andbi can be derived similarly
from Eq.~19!. Finding the stationary distributiont(a,b) of a
hybrid synapse is more difficult. By assuming independen
t(a,b)5q(a)r (b), it is possible to derive a good approx
mation for the mean amplitudet̄ 5^t i& i .

Maximizing E in Eq. ~17! for a hybrid synapse is hard an
so we make the simplifying assumptionstb5t and that the
presynaptic spike train is regular with interspike intervalT to
be optimized. In other words, we maximize

hs5asbs ~22!
A.
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with respect toT, whereas5(12x)/(12gx) is the steady
amplitude of the depressing component, Eq.~16!, bs5(1
2x1zx)/(12x) is the steady amplitude of the facilitatin
component, andx5e2T/t. We find that

dhs

dT
>0 ⇔ z<12g. ~23!

Thus, forz<12g the synapse behaves as a depressing s
apse, otherwise it behaves as a facilitating synapse. Ther
no values for the synaptic parameters, for which the syna
has a bandpass characteristic, e.g., for whichhs is maximized
at finite, nonzero timeT.

We have presented a method for computing station
transmission properties of dynamical synapses. We bel
our method for computing stationary distributions of evok
membrane potentials to be relevant in general for proble
involving stochastic descriptions of neural systems.
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