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Stationary transmission distribution of random spike trains by dynamical synapses
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Many nonlinearities in neural media are strongly dependent on spike timing jitter and intrinsic dynamics of
synaptic transmission. Here we are interested in the stationary density of evoked postsynaptic potentials
transmitted by depressing synapses for Poisson spike trains of fixed mean rates. We present a nonperturbative
iterative method for computing the stationary density over increasing intervals. We conclude by showing how
this method generalizes to other types of synapses, such as facilitating and hybrid synapses.
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Differential equations with random impulse stimulation d ag—alt)
are useful tools for modeling diverse phenomena such as g 20=———+In(ma®)pv), 2
earthquakes and traffic behavior. More recently, phenomeno-
logical stochastic differential equations were introduced that
describe synaptic interactions in neural media. It has previwherea, is the resting amplitudey the depressing factor
ously been shown that noise and dynamical synaptic trand0<y<1), andr the recovery time constany.corresponds
mission can give rise to a broad variety of dynamical behavio the factor by which EPSP amplitudes are reduced after
iors in networks of pulse-coupled neurons, e.g., oscillationséach spike. The shape and duration of EPSP’s are neglected
phase-k)cking’ Synchronization' and Stab”ization/in this description. For simplicity, in the foIIOWing, we set
destabilization of the asynchronous firing stpte-5]. As a  the resting amplitude ta,=1 mV.
first step toward understanding the detailed interplay be- Under stationarity assumptions, the mean EPSP amplitude
tween noise and dynamical synaptic transmission, we hera=(a;); of Poisson spike trains has a particularly simple
study how the irregularity of spike timing translates into ir- expressiorf13]
regularity of synaptic amplitudes. We investigate whether as
for other system$6], exact solutions to the stationary syn-
aptic amplitude density can be computed. a= 1 _
During their normal operation, cortical neurons fire very 1+(1—y)mnt
irregularly[7]. A phenomenologically accurate description of
this irregularity is that of a Poisson spike traift) = X; 5(t
—1t;), according to which interspike interval$SI's) occur

()

Equation(3) can be derived simply by noting thatcorre-
randomly according to an exponential distributi@]j. That sponds to the amplitude at Whi(_:h the' rate of qmplitude de-
is, the probabilityp(T;) of observing the interspike interval Cré@se equals the rate of amplitude increase in(Eq.(1
T,=t,.,—t; is given by —vy)a/N=(1—a)/7. It is currently unknown how to calcu-
late the stationary probability densita) of EPSP ampli-
1 tudes. Here we present a nonapproximative iterative method.
p(T)=—e TN, (1) We start by assuming that we know the amplituejeof
A the ith EPSP. We then calculate the conditional probability
density ofa;,; (the dependence onwill drop in our final
where the parametar corresponds to the mean ISI anfito  fesult by assuming stationarjtyBy integrating Eq.(2) be-
the variance. tween two spikes at timets andt; . ;, we can calculate the
Many cortical neurons have dynamifacilitating and/or ~ dependence od; ., on botha; andT;:
depressingsynapses that elicit variable excitatory postsyn-
aptic potentials(EPSP’3, depending on the history of pr- a =yae 'T+1-e T, (4)
esynaptic activitf9—-11]. If a presynaptic spike train is regu-
lar (periodig, then the amplitudes of evoked postsynaptic . . . .
poteir)nials of a dynamical s;i/)napse approach a s?eadyyvalze;T‘g.e. conditional .den5|t3p(ai+_l|ai) IS dEf.mEd as the prob-
it is not regular, then EPSP amplitudes vary. We will first & lity of ot_)servmg the amplitude;..;, given tha_t_the pre-
consider depressing synapses, for which EPSP amplitudé’éOus amplitude was; . Wr_e can relate the cqndltlonal den-
become smaller, the higher the presynaptic firing frequenc;ﬁ.Ity to. _the IS de.nsny In Eq..(l), py notmg that th.e
A simple phenomenological model in which EPSP ampli-F_)r(_)b""b'“ty _that the {(+ 1)th amplltude Is confined in an n-
tudes are multiplicatively reduced after each presynaptié'mtes"m.al mteryal _aroundaHl IS gqua! to the .pFOb"?‘b'“tY
spike and recover exponentially between spikes gives an efhat the interspike interval is confined in an infinitesimal in-
cellent fit to experimental dafd 2]. Accordingly, the ampli- terval aroundr;, or
tudea;=a(t;) of an EPSP generated by a presynaptic spike
at timet; obeys the following kinetic modéL5]: p(aj 4]a))da; ;1 =p(T)dT;. (5)
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In order to obtain an expression fpfa;_;|a;), we have to

eliminateT; in Eq. (5). We do this by solving Eq(4) for T; ’(\ /\ /\
and replacing the result into E(p). By definings=7/\, we o ' '
find S : :
p(aj,1la)=s(1—ya) (1-a )" (6) b E E
for a; ;= ya; and H-i— i ; a
i+1 i ,Y4Y3 YZ ¥ 1
p(ai;+4|a)=0 (7)

FIG. 1. Iterative scheme for computing the stationary density.
for a;.,<ya;. The reason whyp(a;.,|a;) vanishes for The solution in the intervdly, 1] defines the inhomogeneous term
a,,,<7a; is that an EPSP amplitude cannot be smaller thaﬁor the differential equation in the interv@ih?,y]. The solution

7' times Ithe previous amplitude. It is easy to verify thatthere constitutes the inhomogeneous term for the subsequent inter-
p(ai.1/a;) in Egs.(6) and(7) is properly normalized, i.e., val and so forth.

fép(a”llai?da”l:l' , ) ingly, near the resting amplitudey(a) does not explicitly
By knowing p(a; ; 1|a;), we can infer how théth prob-  jajand ony (though it may implicitly depend ory via the
ability densityp;(a;) for the ith amplitude is mapped onto |, malization factor).
the densityp;+4(a;+,) for the (+1)th amplitude Having derivedq(a) for y<a, we can solve Eq(10) in
1 the regiony?<a<1y. In that region, Eq(10) is a inhomo-
le(aHl):f p(a;i.4]a;)pi(a)da . (8)  geneous differential equation, where the second term on the
0 right constitutes the inhomogeneous term. From(&g), we
substituteq(a/y)=c(a/y—1)°"! into the inhomogeneous
term. For q(a) in Eq. (100 we make the ansatz(a)
=«k(a)(a—1)%"1, from which we find the following expres-
sion for the derivative of the unknown functiot(a):

We are interested in the stationary densj{g) in Eq. (8) by
setting p; . 1(a)=pi(a):=q(a). This leads to the following
integral equation:

Q(a)=S(1—a)s_1J0mm(lam(l—ya’)_sq(a’)da’. 9) dk(a) o 7c s-1

da  \y(a-1)

y—1
! a—1

(13

The difficulty of Eq.(9) arises from the fact that the upper
limit of the integral depends oa.
It is possible to solve EQ9) by numerical iteration. First,

Assumings takes an integer value, the solution of E3)
can be written as

choose an arbitrary starting density, for example the uniform =1 (g 1) (1— )0

density. Then, insert this density on the right hand side of Eq. ()= ¢ > ( )& —In(1-a)+ Czl’

(9) and derive a new density on the left, to be reinserted on AyS[n=1\n n(a—1)"

the right and so forth. This iteration procedure is expected to (14

converge to a solution(a), because this sequence forms a o . ) -
Markov chain which is known to approach a stationary denWhere the large brackets indicate the binomial coefficient and

sity [14] [note that in principleq(a) does not have to be C2 i; an integration ponstant that can be determined by con-
uniqud. This numerical scheme represents a clear computdinuity of a(a) aty, i.e.,

tional advantage over a Monte Carlo simulation of E). s=1 g1\ (—1)n A 7S
In the following we show hovg(a) can also be computed C,= E ( ) -1 —In(1—y)— Y . (15)
analytically. By taking the derivative of E¢9) with respect n=1\Nn
to a, we can express the integral E§) as two differential ] ) o ) .
equations forg(a), valid in nonoverlaping regions Figure 1 shows a schematic depiction of our iterative
scheme for computing(a) in the remaining regiom< 2.
dg(a) (s—1)q(a) The procedure is as follows: we use the solutiga) in the
da  a-1 (y=a), (10 region y’<a< vy as an inhomogeneous terithe last term
in Eq. (10), determingq(a) in the regiony*<a< 2. This
dg(a) (s—1)q(a) sqgaly) equation is again solved by simple integratighe integral
da = a-1 + Yi=a) (a<vy). (12) involving the logarithm is laborious for large and but be
simplified for example by Taylor expansigrthe integration
We can solve Eq(10) to find that for largea, q(a) has constant can be inferred from continqity u‘? Irl this way
the form of a power function we can work our way back to the origin, derivigga) over
a iteratively increasing interval. In practice we can stop the
g(a)=c(a—1)5"! (y=a), (120  procedure after a few iterations, knowing that the density has

to vanish near zero amplitudes.
wherec is an unknown integration constant that ultimately — The intuition behind why our derivation of the stationary
can be determined by normalizatiggqg(a)da=1. Interest-  density is of a fractal nature is that amplitudes in the interval
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FIG. 2. EPSP amplitude histograms for a depressing synapse and three different mean interspike intervals. The full line shows the
analytically derived stationary density—identical to the overlayed density computed by 20 numerical iterationbfiif).an integration
stepsize of 0.01 mV. The vertical dashed line at 0.6 mV indicates the amount by which a fully recovered synapse is depressed after a spike,
i.e.,, y=0.6. ap=1 mV, 7=500 ms.(a) Small mean ISIs X=100 ms).(b) Marginal mean ISIs X=500 ms).(c) Large mean ISIsX
=670 ms).

[ y**1,4X] are conditional on the rapid successionkopr- be understood by the fact that the Poisson spike train con-

esynaptic spikes; the occurrence of which is dependent ofins some very short interspike intervals, among which the
the occurence of a rapid succession kof1 presynaptic Se€cond spike always elicits EPSP’s of particularly small am-
spikes, etc. plitudes, hence the shift to lower mean amplitudes. _

The results of our calculation are compared to a Monte e have found that a regular spike train is the most effi-
Carlo simulation of the original Eqgl) and (2) and to a  Cient input that can be transmitted by a depressing synapse.
numerical evaluation of Eq9), see Figs. @), 2(b), and Zc). ' Nis can be seen as follows. Givéhspikes in a large time
The original equations were simulated by generating a spik#terval T, we ask how to choose the individual interspike
train of 30 000 spikes with different mean IS\s We find a  intervaisT;(i=1,... n), such that the sum of EPSP ampli-
good fit of our calculation to both the Monte Carlo simula- tudes is maximized. The constrained optimization of
tion and the numerical computation. Qualitatively, we find N
that if the mean ISl is small compared to the recovery time E=2 a+a

. . . . i

constant of the depressing synapse, then the stationary distri- i=1
bution of EPSP amplitudes looks approximately similar to a
Gaussian with a small mean amplitufleig. 2@]. If the ~ Wherea is a Lagrange multiplier can be done by replacing
mean IS| is equal to the recovery time constant, then théhe T;’'s by thea;’s using Eq.(4) and setting
stationary distribution is marginal and all amplitudes larger
than y are equal in probabilityFig. 2(b)]. In the last case -
where the mean ISI is smaller than the recovery time con- 98,
stant, the stationary distribution rises sharply for amplitudes ] ] ) o
larger thany, meaning that most EPSP’s have amplitudesP0ing this, we find thag;=a;=a and thatk is maximized
close to the resting amplitude. Thus the shape@f) de- for a regular spike train witff; =T/N.
pends very sensitively on the ratié\, with a marginal be- Our results for depressing synapses can be extended to
havior at\ = 7. facilitating and hybrid synapses. According to REf2], a

An interesting question is whether the mean EPSP amp"simple mpdel for EPSP amplitudeslicited by a facilitating
tude elicited by a Poisson spike train of a given mean rate i§YNapse IS
smaller or larger than the steady amplitude elicited by a regu- d _
lar spike train of the same rate. For fche regular s_p|ke train, d_b: ° 4 Lp(t). (19
we calculate the steady EPSP amplitude by settigg a; t Th
=a;, 4 in Eq. (4), leading to

N
-2 Ti). )

9E
=0. (19)

Unlike depression, facilitation is best described in an addi-
1— N tive manner, by the constafit-0 (multiplicative facilitation
a= e . (16) can lead to unbounded behayidWe can again use an itera-
1—ye N7 tive scheme for computing the stationary densitp) for a
facilitating synapse, given a presynaptic Poisson spike train.
In this equation) corresponds to the fixed ISI of the presyn- Settingby=1 mV we find the analytical solution near the
aptic spike train. It is easy to show that thedependence of resting amplitude

a, is similar tgthat ofa in Eq. (3). However, for allx we r(by=c(b—1)®""1 1<b<l+( (20)
have thatag<a, i.e., the mean amplitude elicited by a Pois-

son spike train is smaller than the steady amplitude of avaximizing E in Eq. (17) for a facilitating synapse does not
regular spike train of the same firing rate. Intuitively, this canresult in a regular spike train. On the contrary, the sum of
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EPSP amplitudes is largest when the interspike intervals aneith respect toT, whereag=(1—x)/(1— yx) is the steady
as small as possible, e.g., when the presynaptic neuron @nplitude of the depressing component, Et6), bs=(1

bursting.

—Xx+{xX)/(1—x) is the steady amplitude of the facilitating

In the most general case, a synapse may have both faciltomponent, ana=e™ 7. We find that

tating and depressing components. A quantitatively good
model is a multiplicative combination of the previous de-

scriptions [12]. Accordingly, the amplitudeh; of the ith
EPSP of a hybrid synapse is given by

hi:aibi s (21)

wherea; is given by Eq.(4) andb; can be derived similarly

from Eq.(19). Finding the stationary distributiar{a,b) of a

hybrid synapse is more difficult. By assuming independence,
t(a,b)=q(a)r(b), it is possibl_e to derive a good approxi-

mation for the mean amplitudie= (t;); .

Maximizing E in Eq.(17) for a hybrid synapse is hard and
so we make the simplifying assumptions= = and that the

presynaptic spike train is regular with interspike interVab
be optimized. In other words, we maximize

hs=ashs (22)

dhg

Thus, for{<1- v the synapse behaves as a depressing syn-
apse, otherwise it behaves as a facilitating synapse. There are
no values for the synaptic parameters, for which the synapse
has a bandpass characteristic, e.g., for whicts maximized

at finite, nonzero tim4.

We have presented a method for computing stationary
transmission properties of dynamical synapses. We believe
our method for computing stationary distributions of evoked
membrane potentials to be relevant in general for problems
involving stochastic descriptions of neural systems.
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